

TOXIC EFFECT OF SECONDARY METABOLITES OF *CLADOSPORIUM HERBARUM* ON LARVAE OF *CULEX PIPIENS* AND *ANOPHELES STEPHENSI* (DIPTERA: CULICIDAE)

Hanaa R. lefta^{1*} and Mohammad R. Annon²

^{1*}Department of Biology, College of Education, University Al-Qadisiya, Iraq. ²Department of Biology, College of Science, University Al-Qadisiya, Iraq.

Abstract

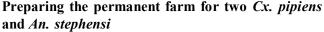
Cladosporium herbarum (Persoon) is one of the fungi accompanying mosquitoes and belongs to the branch of the cystic fungi. The present results showed the effect of crude secondary metabolism in fourth larvae phases of *Cladosporium herbarum*, for both kinds of mosquitoes which came from different incubation period. The high mortality rate of larvae phases was after an incubation period 21 days, whereas LC50 values were (112.5, 129, 148.7, 170.3 ppm) of *Cx. pipiens* and (103.2, 119.4, 138.8, 158.6 ppm) for *An.stephensi*. The results of sensitivity revealed that the first phase of *An. Stephensi* was the most sensitive among other phases of *Cx, pipiens*.

Key words: secondary metabolites, Cl. Herbarum, IC50.

Introduction

The mosquito (Liston) Anopheles stephensi is a major vector of malaria in many of the world, including Iraq, where more than 250 million people, as well as more than one million deaths each year in the world, are infected with malaria (WHO, 2018), while the Culexpipiens L. To various dangerous viral pathogens, including St. Louis virus (causing encephalitis), West Nile and dengue fever and the nematode Wuchereriabancrofti that causes elephantiasis of the so-called filariasis, which wastes the lives of millions of people, more than 700 million people have been infected with filariasis. About 103 billion people in more than 80 countries face the risk of infection with this disease and since the control of vectors is more comfortable than controlling the pathogen itself, researchers have paid attention to mosquito control from an early age and perhaps chemical control was and still is the most effective in eliminating mosquitoes and reducing their damage. In different parts of the world, many manufactured pesticides were used, but the damage caused by them was not a small thing, as their use led to pollution of the environment and the acquisition of target insects The ability to adapt to toxic substances quickly and to start developing immunity against them (Ishak et

*Author for correspondence : E-mail: hanaa.rahman@qu.edu.iq


al., 2017), so researchers had to search for other alternatives, one of which is biological control. Pathogenic fungi are among the important factors for their spread and wide presence in nature, as well as being non It is expensive. It is distinguished by its high specialization to confront a specific pest that is manufactured inside the fungal cell in small quantities. Still, its importance is great as it has toxic effectiveness against insects, so attention has turned to secondary metabolites in insect control to be a safer alternative to manufactured pesticides because they are toxic, inhibitory or inhibitory. In insects, the fungus Cladosporium herbarum (Persoon) is one of the fungi accompanying mosquitoes and belongs to the branch of the cystic fungi and its effect on the whitefly Bemisia sp. and scale insects (Abdel-Baky et al., 2000), given the medicinal importance of my mosquito, An. stephensi and Cx. pipiens L. the investigation of new means to combat them in life and the fact that previous research that contributed to isolating local types of fungi and using them as a vital factor in the control is almost very few, as well as it, have not previously address the fungus Cl. Herbarum. Therefore, the study aimed to isolate the fungus above from the larvae of the naturally infected Culex and Anopheles mosquitoes for the first time in Iraq and isolate its secondary metabolites compounds and

separate them chemically to determine its effectiveness as a biocide that can be manufactured.

Materials and Methods

Isolation of the fungus Cl. Herbarum

The fungus was isolated from naturally infected mosquito larvae, where four ponds chosen to collect the larvae of *Culex* and *Anopheles* mosquitoes. The mosquitoes abound in these ponds because they are rich in organic materials. Ten samples were taken to cover the area of our study. Different locations for each pond from December 2018 until September 2019 were transferred to the laboratory, sterilized and then placed in container Petri dishes on PDA medium and dishes were incubated at $25 \pm 2^{\circ}$ C for seven days, then fungus was diagnosed microscopically.

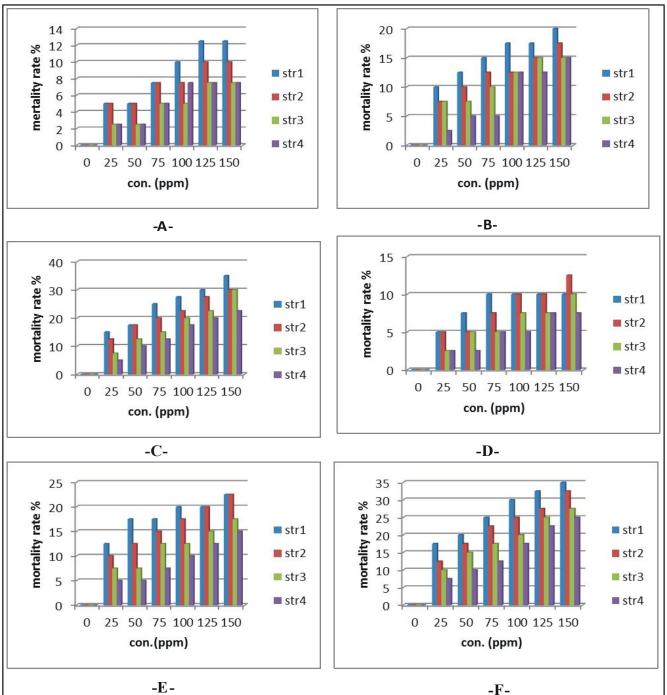


Fig. 1: Effect of secondary metabolites of the fungus with a 7- day incubation of four mosquitoes larvae *Cx. pipiens* (A, B, C) after 24, 48, 72 hours (D, E, F) of *An. Stephensi* after 24, 48, 72 hours.

In order to obtain a pure permanent culture, additional samples were taken from the different stages of mosquito larvae *Cx. pipiens* from the aforementioned collection areas, according to Mehdi and Mohsen, (1989) method; adults of *An. stephensi* were collected in the places of raising animals by the aspirator, then placed in wide-mouthed bottles covered with Altul cloth and transported to the laboratory and released in the breeding cage and their life cycle was followed until the emergence of the third generation. For preparing adequate numbers of larvae, pupae and adults, they were isolated sufficient

numbers of eggs to obtain the first larval stage. The second, third and fourth in stars were prepared by isolating numbers of the larvae of the previous stage and placing them in the breeding tubes individually and monitoring them until the molting reaches the required stage for both types separately.

Preparation the crude secondary metabolites of *Cl. herbarum* with different incubation periods (7, 10, 14, 21, 28) days

Potato Dextrose Broth (PDB) was prepared and distributed in 250 ml flasks in 150 ml beaker. Inoculate

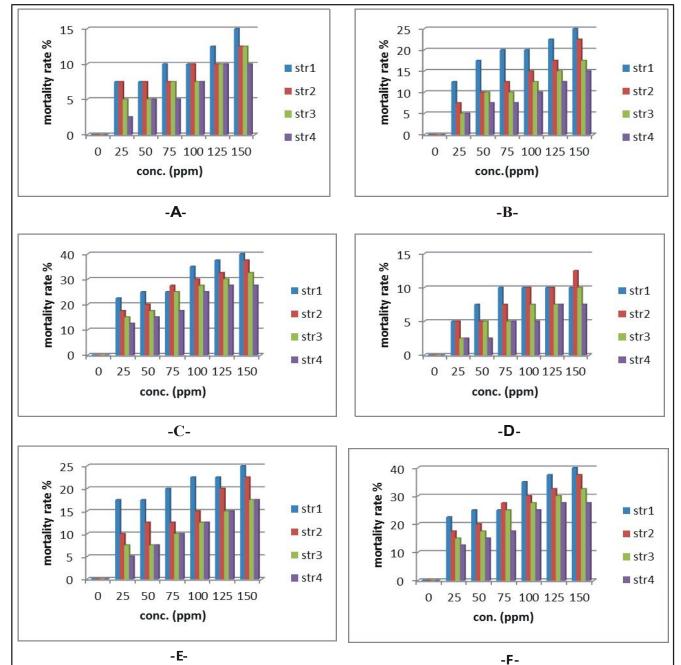
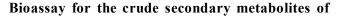



Fig. 2: Effect of secondary metabolites of the fungus with 10- day incubation of four mosquito larvae *Cx.pipiens* (A, B, C) after 24, 48, 72 hours, (D, E, F) of *An. stephensi* after 24, 48, 72 hours.

the medium with 0.5 cm diameter from the colony of fungus culture at seven days old. The flasks were incubated in a vibrating incubator 150 rpm speed at $25\pm2^{\circ}$ C temperature. The incubation period was extended 7, 10, 14, 21, 28 days, after which it was filtered with Whatman No. by taking 0.25 ml of the filtrate and adding 400.75 ml of distilled water to complete it to 500 ml and from this solution the concentrations were prepared (150, 125, 100, 75, 50, 25 ppm) (Soni and Prakash, 2010).

Cl. herbarum with different brood durations in the four larval stages of two type of mosquitoes *Cx. pipiens* and *An. stephensi*

Forty larvae were taken from each of the larval stages that were prepared as in paragraph (1) and for each concentration of secondary metabolites concentrations of the two types of mosquitoes (separately) and distributed into four three containers, each containing 100 ml of each concentration. The fourth it contains sterile distilled water (control treatment). Then the treated larvae were

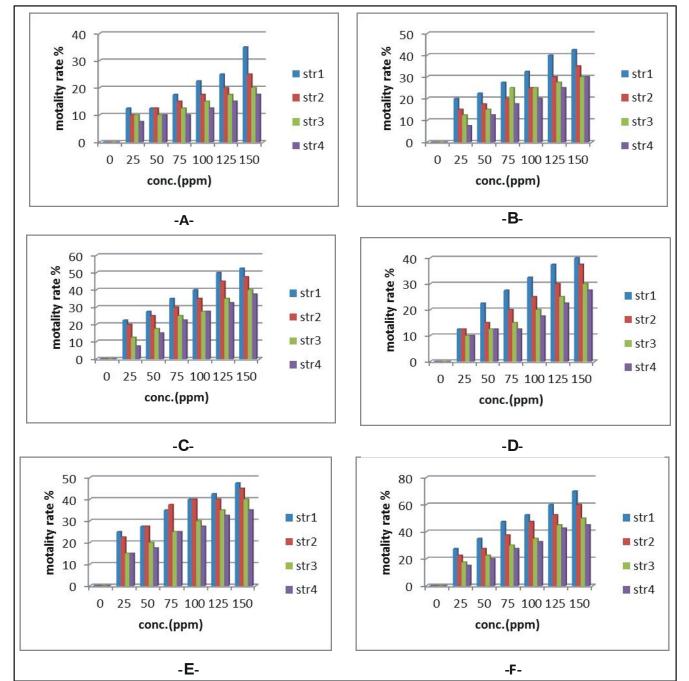


Fig. 3: Effect of secondary metabolites of the fungus with 14- day incubation of four mosquito larvae *Cx.pipiens* (A, B, C) after 24, 48, 72 hours (D, E, F) of *An. stephensi* after 24, 48, 72 hours.

transferred with a soft brush to glass containers of 250 ml containing sterile distilled water to which the larvae food was added by 10 mg. The vessels were placed in the incubator at a degree of 25 ± 2 , then the percentage of mortality was calculated within 24, 48, 72 hours of treatment and percentages corrected.

Statistical analysis

The statistical program (SPSS Statistical Package for Social Sciences (SPSS Inc., Chicago, IL, USA) used version 23 to analyze all the results of the current study and the percentages of depreciation were calculated and corrected according to the Abbott Formula, (1925):

$$\frac{\% \text{ corrected}}{\text{mortality}} = \frac{\text{the \% of mortality in treatment - the \% of mortality in control}}{100 - \text{percentage of mortality in control}} \times 100$$

The value of LC_{50} and LC_{90} was also calculated using the Probit program according to the Finney, 1971 method. The statistical analysis also included determining the value of the Chi-square test, the P value and the regression equation.

Results and Discussion

The biological test of the crude secondary metabolites, *Cl. herbarum* in the four larval stages

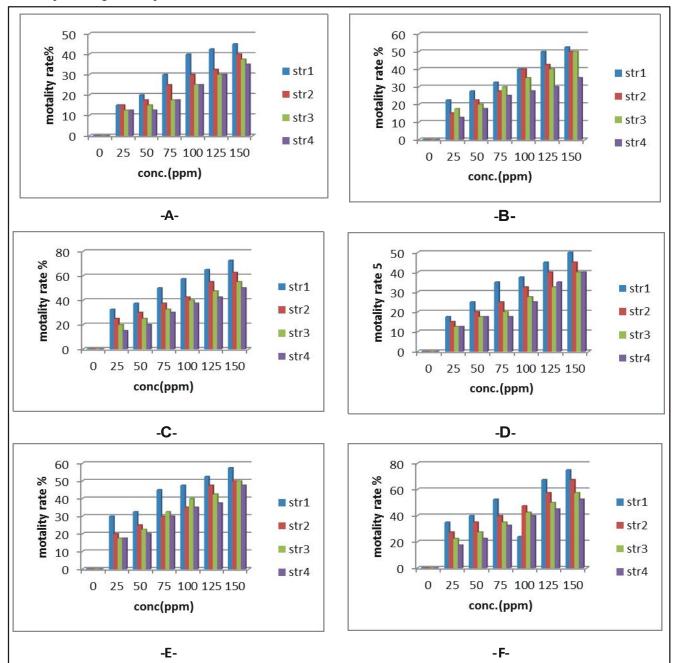


Fig. 4: Effect of secondary metabolites of the fungus with 21 day incubation of four mosquito larvae *Cx.pipiens* (A, B, C) after 24, 48, 72 hours (D, E, F) of *An. stephensi* after 24, 48, 72 hours.

of two types of mosquitoes *Cx. pipiens* and *An. stephensi* incubation in periods (7, 10, 14, 21, 28) days

Figs. 1,2,3,4 and 5, showed the effect of the secondary metabolites of *Cl. herbarum* in the four larval stages of *Cx. pipiens* and *An. Stephensi*. The mortality rates of the first larval stage of *Cx. pipiens* using the secondary metabolites were (35, 40, 67.5, 72.5, 70%) and (35, 40, 70, 75, 72.5)% of *An. stephensi* using the highest concentration of 150 ppm and with stimulation durations (7, 10, 14, 21, 28). Our results observed increase the percentage of mortality with increasing concentration,

while there were no losses in the control treatment and the first phase was the most sensitive phase. Also, the present results showed significant differences between the two types of mosquitoes.; *An. stephensi* is more sensitive than *Cx. pipiens* and mortality was highest percentage during the incubation period of 21 days, which indicates that the fungus took sufficient time to produce toxic and effective substances against the insect, this evident in the values of LC_{50} , was reached to lowest value after the 21-day incubation period, which reached (112.5, 129, 148.7, 170.3) ppm of the four larval stages of *Cx. pipiens* and (103.2, 119.4, 138.8, 158.6 ppm) for

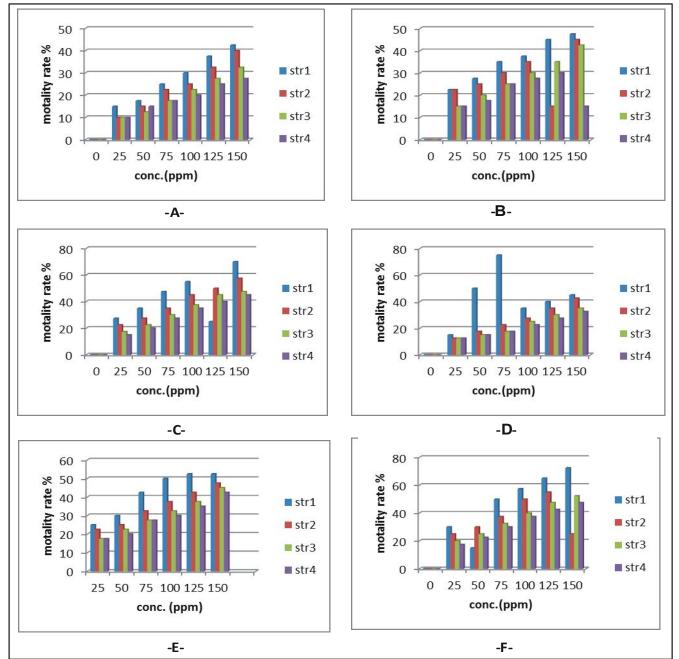


Fig. 5: Effect of secondary metabolites of the fungus with 28days incubation of four mosquito larvae *Cx.pipiens* (A, B, C) after 24, 48, 72 hours (D, E, F) of *An. stephensi* after 24, 48, 72 hours.

Table 1: Values LC_{50} and LC_{90} For the biological testing of crud metabolites of the fungus *Cl.herberum* with 7 Days incubationperiod for the four larval stages of the two mosquito species.

IC	C x. p ipiens														An.stephensi													
		11			21			3			4I			11			2I			3			4I					
	24	48	72	24	48	72	24	48	72	24	48	72	24	48	72	24	48	72	24	48	72	24	48	72				
IC 50	385	399	221	530	404	255	451	410	258	439	285	257	657	435	225	421	328	235	429	370	255	451	341	249				
value	.8	.1	.7		.8	.2	.1	.3	.5	.9	.7	.3	.1	.3	.5	.8	.8	.7	.1	.1	.9	.1	.2	.9				
Limit	289	298	158	425	350	173	426	372	181	414	200	184	504	403	156	383	244	166	391	283	177	426	259	181				
s 95%	.1-	.1-	.6-	.2=	.1-	.7-	-	.2-	.8-	.2-	.3-	.8-	.1-	.2-	.8-	.6-	.3-	.1-	.9-	.2-	.3-	-	.7-	.1-				
	701	724	753	101	801	159	899	851	906	899	102	739	111	896	123	861	623	906	876	719	111	899	667	674				
	.3	.6	.8	6.2	.3	3.8	.2	.3	.1	.2	7.5	.1	2.1	.1	7.1	.1	.2	.2	.2	.2	4.1	.2	.1	.7				
IC 90	662	787	470	920	754	523	728	746	482	715	464	456	119	926	504	726	638	486	709	674	501	728	579	450				
value	.4	.4	.6	.1		.9	.9	.9	.3	.8	.8	.2	2.6	.04	.1	.7	.1	.1	.1	.6	.7	.9	.4	.5				
Limit	394	513	300	549	498	318	479	493	308	461	301	300	687	626	308	477	411	306	477	418	313	479	457	299				
s 95%	.2-	.1-	.2-	.2-	.6-	.8-	.3-	.2-	.7-	.5-	.5-	.7-	.1-	.2-	.7-	.2-	.2-	.6-	.2-	.1-	.6-	.3-	.2-	.1-				
	401	412	201	813	444	406	442	477	200	442	192	152	882	519	360	442	300	231	442	379	265	442	370	142				
	3.1	5.2	2.5	1.1	2.1	4.7	5.4	.2	8.9	1.7	2.4	9.2	4.3	7.2	.1	4.2	9.7	7.5	4.2	4	1.4	5.4	1	2.4				
X2	0.2	0.1	0.2	0.1	0.1	0.1	0.2	0.1	0.3	0.4	0.8	0.4	0.4	0.2	0.1	0.1	0.0	0.2	0.2	0.2	0.2	0.2	0.0	0.0				
	05	24	40	35	03	13	25	54	00	88	23	42	30	36	34	55	19	14	25	36	22	25	90	93				
Р	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	1	0.9	0.9	0.9	0.9	0.9	0.9	0.9				
value	95	98	93	98	99	98	94	97	90	75	35	79	80	94	98	97		95	94	94	94	94	99	99				
Regre	Y=	Y=	Y=	Y=	Y=	Y=	Y=	Y=	Y=	Y=	Y=	Y=	Y=	Y=	Y=	Y=	Y=	Y=	Y=	Y	Y=	Y=	Y	Y=				
ssion	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	= -	-	-	= -	-				
eguati	1.8	1.3	1.1	1.7	1.4	1.2	2.1	1.5	1.5	2.0	2.0	1.7	1.6	1.1	1.0	1.7	1.3	1.2	1.9	1.5	1.3	2.1	1.8	1.0				
on	+	2 +	5+	5+	9+	2 +	+	7+	+	8+	9+	+	+	4 +	4 +	8 +	7+	2 +	9+	7+	5+	+	3+	6+				
	4.7	3.3	5.2	3.3	3.7	4.8	4.7	3.8	5.9	4.9	7.5	6.8	2.6	2.6	4.6	4.2	4.1	5.2	4.8	4.2	5.3	4.7	5.3	6.4				
	E-3	7E-	1E-	2E-	3E-	3E-	6E-	4E-	5E-	9E-	4E-	4E-	2E-	8E-	4E-	4E-	8E-	3E-	2E-	7E-	5E-	6E-	5E-	2E-				
	* X	3 *	3 *	3 *	3*	3*	3 *	3 *	3 *	3*	3*	3 *	3*	3 *	3*	3 *	3*	3*	3 *	3*	3 *	3 *	3 *	3*				
		х	Х	X	Х	х	Х	х	X	X	Х	х	X	X	х	Х	х	х	X	X	х	х	X	х				

Table 2: LC_{50} and LC_{90} values of crude metabolites for fungus *Cl. herberum* with 10 days incubation period for the four larval stages of the two mosquito species.

<u> </u>	An.stephensi													C x. p ipiens													
	4 I			3			2 I			1 I			4 I			3			2 I			1 I					
72	48	24	72	48	24	72	48	24	72	48	24	72	48	24	72	48	24	72	48	24	72	48	24				
255	385	439	249	370	429	235	328	421	221	35	399	258	441	551	257	410	551	255	404	530	225	403	457	IC 50			
.9	.7	.9	.9	.1	.1	.7	.8	.8	.7	8.8	.1	.5	.2	.1	.3	.3	.1	.2	.8		.5	.3	.1	value			
177	200	414	181	283	391	166	244	383	158	28	298	181	259	426	184	372	426	173	350	425.	156	403	404	Limit			
.3-	.3-	.2-	.1-	.2-	.9-	.1-	.3-	.6-	.6-	9.1	.1-	.8-	.7-	-	.8-	.2-	-	.7-	.1-	2=1	.8-	.2-	.1-	S			
111	102	899	674	719	876	906	623	861	753	-	724	906	667	899	739	851	899	159	801	016.	123	896	111	95%			
4.1	7.5	.2	.7	.2	.2	.2	.2	.1	.8	70	.6	.1	.1	.2	.1	.3	.2	3.8	.3	2	7.1	.1	2.1				
										1.3																	
501	464	715	450	674	709	486	638	726	470	66	787	482	579	728	456	746	728	523	754	920.	504	926	119	IC 90			
.7	.8	.8	.5	.6	.1	.1	.1	.7	.6	2.4	.4	.3	.4	.9	.2	.9	.9	.9	154	920. 1	.1	.04	2.6	value			
.,	.0	.0		.0	.1	.1	.1	• *	.0	2.7	.7			.,	.4	.,	.,	.,		1	.1	.04	2.0	value			
313	301	461	299	418	477	306	411	477	300	39	513	308	457	479	300	493	479	318	498	549.	308	626	687	Limit			
.6-	.5-	.5-	.1-	.1-	.2-	.6-	.2-	.2-	.2-	4.2	.1-	.7-	.2-	.3-	.7-	.2-	.3-	.8-	.6-	2-	.7-	.2-	.1-	s			
265	192	442	142	379	442	231	300	442	201	-	412	200	370	442	152	477	442	406	444	813	360	519	882	95%			
1.4	2.4	1.7	2.4	4	4.2	7.5	9.7	4.2	2.5	40	5.2	8.9	1	5.4	9.2	.2	5.4	4.7	2.1	1.1	.1	7.2	4.3				
										13.																	
										1																	
					[[[
0.2	0.8	0.4	0.0	0.2	0.2	0.2	0.0	0.1	0.2	0.2	0.1	0.3	0.0	0.2	0.4	0.1	0.2	0.1	0.1	0.13	0.1	0.2	0.3	X2			
22	23	88	93	36	25	14	19	55	40	05	24	00	90	25	42	54	25	13	03	5	34	36	30				
0.9	0.9	0.9	0.9	0.9	0.9	0.9	1	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.99	0.9	0.9	0.9	Р			
94	35	75	99	94	94	95	1	0.9 97	93	95	98	90	0.9 99	0.9 94	79	0.9 97	0.9 94	98	99	8	98	94	80	value			
24	55	15	"	74	24	35		51	,,,	35	20	50	"	24	13	21	24	20	"	0	50	24	00	value			
Y=-	Y=-	Y=-	Y=-	Y=-	Y=-	Y=-	Y=-	Y=-	Y=-	Y=	Y=-	Y=	Y=-	Y=	Y=	Y=-	Y=	Y=-	Y=-	Y=-	Y=-	Y=-	Y=	Alanh			
1.3	2.0	2.0	1.0	1.5	1.9	1.2	1.3	1.7	1.1	-	1.3	-	1.8	-	-	1.5	-	1.2	1.4	1.75	1.0	1.1	-	dequa			
5+5	9+7	8+4	6+6	7+4	9+4	2+5	7+4	8+4	5+5	1.8	2+3	1.5	3+5	2.1	1.7	7+3	2.1	2+4	9+3	+3.3	4+4	4+2	1.6	tionR			
.35	.54	.99	.42	.27	.82	.23	.18	.24	.21	+4.	.37	+5.	.35	+4.	+6.	.84	+4.	.83	.73	2E-	.64	.68	+2.				
E-	E-	E-	E-	E-	E-	E-	E-	E-	E-	7E	E-	95	E-	76	84	E-	76	E-	E-	3*X	E-	E-	62				
3*X	3*X	3*X	3*X	3*X	3*X	3*X	3*X	3*X	3*X	-	3*X	E-	3*X	E-	E-	3*X	E-	3*X	3*X		3*X	3*X	E-				
										3*		3*		3*	3*		3*						3*				
										Х		Х		х	Х		х						Х				

Table 3: LC_{50} and LC_{90} values of crude metabolites for fungus <i>Cl. herberum</i> with 14 days incubation period for the four larval
stages of the two mosquito species.

72 48 24 72 43 43 43 <t< th=""><th colspan="12">An.stephensi</th><th colspan="14">C x. pipiens</th></t<>	An.stephensi												C x. pipiens													
246. 361. 489. 228. 452. 45. 29. 451. 201. 253. 447. 257. 374. 543. 235. 360. 533. 211 330. 513. 202. 330. 43. 20. 330. 43. 22. 330. 513. 20. 330. 513. 20. 330. 513. 20. 330. 513. 20. 330. 513. 20. 330. 513. 20. 330. 513. 20. 330. 513. 20. 330. 513. 20. 330. 513. 20. 330. 513. 20. 330. 513. 20. 330. 513. 20. 330. 513. 100. 330. 513. 100. 330. 513. 100. 330. 513. 660. 76. 97. 7 2 2 2 5 5 2.3 66. 33. 2 1.1 6 2 1.1 6		4 I			3			21			11			4 I			r3			2I			11			
9 6 5 9 3 2.5 5 8 7 9 7 4 7 1 6 9 1 7 7 9 3 2 7 1 175. 26. 26. 166. 23. 73. 6 4 2. 66. 4.4 2. 66. 4.4 2. 66. 4.4 2. 66. 4.4 2. 1.6 3.2 2. 893. 1.1 1.1 1.4 1.9 9.4 4.33 412. 3.778 731. 626. 662. - 799. 233 899. 695. 76. 913. 1.7 7 7 2 2 1.4 5 2.3 6 3 2. 1.1 6 2. 2. 2.3 6 3 2. 1.1 6 2. 2. 2.3 6 3 2. 1.1 6 2. 2. 2.3 6 3. 2. 1.1 6 2. 1.1 6.5 5. 3.4	72	48	24	72	48	24	72	48	24	72	48	24	72	48	24	72	48	24	72	48	24	72	48	24		
Image: Note of the section of the sectin of the sectin of the section of the section of the sec	246.	361.	489.	228.	452.	43	212.	297.	451.	201.	253.	447.	257	374.	543.	235.	360.	533.	221	330	513.	202.	330	453.	IC	
175. 206. 296. 166. 254. 39 151. 197. 429. 145. 236. 435. 175. 297. 497. 150. 151. 152. 151. 152. 151. 152. 151. 152. 151. 152. 151. 152. 151. 152. 151. 152. 151. 152. 151. 152. 151. 152.	9	6	5	9	3	2.5	5	8	7	9	7	4		1	6	9	1	7		.9	3	2		1	50	
3. 4. 2. 6. 3. 7.3 6. 4. 2. 6. 4. 1. 6. 2. 1. 3. 2. 893. 1. 1. 1. 9. 3. 3. 3. 812. 3778 731. 626. 662. 799. 2330 899. 695. 765. 913. 1438 747. 109 1249 697. 3. 696. 571. 1098. 1654 907. 998. 3. 474. 552. 641. 449. 606. 76 474. 543. 825. 666. 78. 79 2.1 9 8. 4. 6. 2.1 1. 9. 3. 3. 3. 305. 329. 393. 29. 64. 1. 56. 518. 649. 109 506. 647. 743. 463. 631 116.5 505. 104 923. 3. 4. 2.2 3. 57. 3. 4. 2.2 3. 5. 5. 3																									valu	
3. 4. 2. 6. 3. 7.3 6. 4. 2. 6. 4. 1. 6. 2. 1. 3. 2. 893. 1. 1. 1. 9. 3. 3. 3. 812. 3778 731. 626. 662. 799. 2330 899. 695. 765. 913. 1438 747. 109 1249 697. 3. 696. 571. 1098. 1654 907. 998. 3. 474. 552. 641. 449. 606. 76 474. 543. 825. 666. 78. 79 2.1 9 8. 4. 6. 2.1 1. 9. 3. 3. 3. 305. 329. 393. 29. 64. 1. 56. 518. 649. 109 506. 647. 743. 463. 631 116.5 505. 104 923. 3. 4. 2.2 3. 57. 3. 4. 2.2 3. 5. 5. 3																									e	
812. 3778 731. 626. 662. - 799. 2330 899. 695. 765. 913. 1438 747. 109 1249 697. 3 696. 571. 1098 1654 907. 998. 474. 552. 641. 449. 606. 76 474. 543. 825. 463. 71 5 23 66 3 3 696. 571. 1098 1654. 907. 998. 30 5 3 9 0.3 8 1 6 6 71 10 77 7 9 21. 9 86. 47. 463. 631. 1165 505. 104 999. 999. 9 9 21. 9 8 4 65 22. 1.1 4 1.2 3 305. 329. 393. 295. 478. 473. 409. 614. 311. 496. 578. 298. 387. 656. 303. 707. 2. 2.5 3. 2.5 <	175.	206.	296.	166.	254.	39	151.	197.	429.	145.	236.	435.	175.	297.	497.	163.	277.	401-	159.	261	499.	140.	433.	412.	Lim	
1 .6 .3 .4 4 88 .7 .1 .7 .7 .2 .2 .5 .2.3 .6 .3 .2 .1 .6 .2 474. 552. 641. 449. 606. .76 474. 543. 825. 463. 748. 850. 518. 649. 109 506. 647. 743. 463. 631. 11.65 505. 1.04 959. 305. 329. 932. 95. 478. 47 299. 328. 523. 294. 534. 598. 317. 409. 614. 311. 496. 578. 298. 387. 4.2 2.5 5.4 2.2 5.5 3.2 2.2 1.1 4.4 2.2 3.44 2.2 5.5 3.7 2.2 1.1 8.3 8.37 3.11. 5.5 8.37 3.416 392. 5.12 1.1 1.3 4.4 2.5 5.5 3.7 7.7 2.2 2.5 2.1 2.5 3.2 3.1	3-	4-	2-	6-	3-	7.3	6-	4-	2-	6-	4-	1-	6-	2-	1-	3-	2-	893.	1-	.1-	1-	9-	3-	3-	its	
474. 552. 641. 449. 606. 76 474. 543. 825. 463. 748. 850. 518. 649. 109 506. 647. 743. 463. 631 1165 505. 104 959. 305. 329. 393. 295. 478. 47. 299. 328. 523. 294. 534. 598. 317. 409. 614. 311. 496. 578. 298. 387. 656. 303. 707. 570. 5- 8- 2- 9- 6- 61. 3- 5002 2103 5122 516 357. 381. 499. 501. 311. 496. 578. 298. 387. 656. 303. 707. 570. 5. 8- 2- 9- 6- 61. 3- 502 103 5122 516 357. 321. 873 3416 392. 5012 1821 466 8791 5866 731 831 6 2 1 1.1 9	812.	3778	731.	626.	662.	-	799.	2330	899.	695.	765.	913.	1438	747.	109	1249	697.	3	696	571	1098	1654	907.	998.	95	
474. 552. 641. 449. 606. 76 474. 543. 825. 463. 748. 850. 518. 649. 109 506. 647. 743. 463. 631 1165 505. 104 959. 305. 329. 393. 295. 478. 47 299. 328. 523. 294. 534. 598. 317. 409. 614. 311. 496. 578. 298. 387. 656. 303. 707. 570. 5 8 2 9 6 61. 3 5022 11. 4 2 8 9 1. 3 4 2 3 5 .4 2 5 3 5 .4 2 5 302. 301. 108 302. 873 3416 392. 5012 1821 466 8791 5866 731 831 .6 2 .4 .5 .6 .1	1	.6	3	4	4	88	7	.1	7	7	2	2		5	2.3	.6	3			.2		.1	6	2	%	
8 3 5 3 9 0.3 8 1 6 6 1 5 7 9 2.1 9 8 4 6 2 1.1 44 1.2 3 305. 329. 393. 295. 478. 47 299. 328. 523. 294. 534. 598. 317. 409. 614. 311. 496. 578. 298. 387. 656. 303. 707. 570. 5. 8. 2. 344. 2. 3.5 4.4. 2. 3.5 4.4. 2. 3.5 4.4. 2. 3.5 5. 4.4. 2. 5. 3.4. 4.4. 2. 3.5 5. 4.4. 2. 5. 3.2. 1.8. 1.1. 4.4. 2. 3.5 5. 4.4. 2. 3.5. 7.7. 2.5. 6.6 3.1. 5 8.2 2.2 1 1.1 9 5 7.7. 2.2 2.5 2.1 2.5 1.1 1.4. 1.4. 1.7. 1.8. 3						9.1																				
8 3 5 3 9 0.3 8 1 6 6 1 5 7 9 2.1 9 8 4 6 2 1.1 44 1.2 3 305. 329. 393. 295. 478. 47 299. 328. 523. 294. 534. 598. 317. 409. 614. 311. 496. 578. 298. 387. 656. 303. 707. 570. 5. 8. 2. 344. 4.2. 3. 44.2. 8. 9. 1. 3.4 4.4.2. 3.5 5.4.4.2. 53.2. 2.5.3.2. 2.1 9 8. 4.4.2. 3.5.5. 4.4.2. 2.5.3.2. 2.1 1.1 4.96.578. 298. 387.666. 701.8.31.8.31 831 3.1 5 5.6 3.1 .5 8.73 3416 392.5012 1821 466 8791 5866 731 831 3.1 .5 7 7 4 6 0.7 2.2.5 2.5 2.1 2.5 7																										
305. 329. 393. 295. 478. 47 299. 328. 523. 294. 534. 598. 317. 409. 614. 311. 496. 578. 28. 387. 656. 303. 707. 57. 5. 8. 2. 9. 6. 61. 3. 5029 1. 4. 2. 8. 9. 1. 3. 4. 2. 5. 4. 2. 5. 4. 2. 5. 4. 2. 5. 3.1. 5. 3.2 5. 4. 2. 5. 3.7 4. 2. 3.3 3.16 3.32. 873 3.416 3.32. 1.32. 1.32 1.3 8. 3.7 2. 2.5 2.1 3.3 2.2 1.1 1.9 5 7.7 2.2 2.5 2.1 3.1 5. 7.7 7.4 6 0.07 0.11 0.13 0.10 0.06 0.99 0.99 0.99 </td <td>474.</td> <td>552.</td> <td>641.</td> <td>449.</td> <td>606.</td> <td>76</td> <td>474.</td> <td>543.</td> <td>825.</td> <td>463.</td> <td>748.</td> <td>850.</td> <td>518.</td> <td>649.</td> <td>109</td> <td>506.</td> <td>647.</td> <td>743.</td> <td>463.</td> <td>631</td> <td>1165</td> <td>505.</td> <td>104</td> <td>959.</td> <td>IC</td>	474.	552.	641.	449.	606.	76	474.	543.	825.	463.	748.	850.	518.	649.	109	506.	647.	743.	463.	631	1165	505.	104	959.	IC	
org co c	8	3	5	3	9	0.3	8	1	6	6	1	5	7	9	2.1	9	8	4	6	.2	.1	4	1.2	3	90	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																									valu	
5- 8- 2- 9- 6- 6.1 3- 5029 1- 4- 2- 8- 9- 1- 3- 4- 2- 3- 5- 4- 2- 5- 3- 2- 8- 9- 1- 3- 4- 2- 3- 5- 4- 2- 5- 3- 2- 8- 9- 1- 3- 4- 2- 3- 5- 4- 2- 5- 3- 2- 8- 9- 1- 3- 3+ 4- 2- 3- 5- 4- 2- 5- 3- 2- 8- 3- 4- 3- 5- 3- 4- 2- 3- 5- 4- 6- 70 7 2 5- 6.0 3.1 5- 7 3- 5- 6.0 3.1 1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.0 0.1 0.1 0.0 0.1 0.1 0.1 0.0 0.0 0.0 0.0																									е	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	305.	329.	393.	295.	478.	47	299.	328-	523.	294.	534.	598.	317.	409.	614.	311.	496.	578.	298.	387	656.	303.	707.	570.	Lim	
.6 .2 .4 .2 .4 .2 .4 .6 .7 .5 .6 3.1 .5 .8 .2 .2 1 .1 .9 .5 .7 .2 2.5 2.1 0.23 0.07 0.26 0.40 0.33 0.1 0.21 0.03 0.11 0.12 0.24 0.10 0.41 0.08 0.22 0.34 0.07 0.12 0.07 0.1 0.13 0.10 0.06 0.09 2 4 5 2 7 2 5 7 2 5 7 2 0.34 0.07 0.12 0.07 0.1 0.13 0.10 0.06 0.09 2 4 5 7 2 5 7 7 4 6 0 1 7 3 7 0.99 0.99 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 <td>5-</td> <td>8-</td> <td>2-</td> <td>9-</td> <td>6-</td> <td>6.1</td> <td>3-</td> <td>5029</td> <td>1-</td> <td>4-</td> <td>2-</td> <td>8-</td> <td>9-</td> <td>1-</td> <td>3-</td> <td>4-</td> <td>2-</td> <td>3-</td> <td>5-</td> <td>.4-</td> <td>2-</td> <td>5-</td> <td>3-</td> <td>2-</td> <td>its</td>	5-	8-	2-	9-	6-	6.1	3-	5029	1-	4-	2-	8-	9-	1-	3-	4-	2-	3-	5-	.4-	2-	5-	3-	2-	its	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1874	7722	3914	1485	3768	-	2317	.5	5002	2103	5122	516	3574	3821	873	3416	392	5012	1821	466	8791	5866	731	831	95	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $.6	.2	.4	.2		44	.6		.7	.5	.6	3.1	.5		8.2	.2	1	.1	.9	5	.7	.2	2.5	2.1	%	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						23.																				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						2																				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.23	0.07	0.26	0.40	0.33	0.1	0.21	0.03	0.11	0.12	0.24	0.10	0.41	0.08	0.22	0.34	0.07	0.12	0.07	0.1	0.13	0.10	0.06	0.09	X2	
4 9 2 2 7 97 5 8 8 3 9 1 9 4 7 9 8 9 97 8 9 9 Y=	2	4	5	2	8	60	0	2	4	5	7	2	5	7	7	4	6	0	1	72	4	7	3	7		
4 9 2 2 7 97 5 8 8 3 9 1 9 4 7 9 8 9 97 8 9 9 Y=																										
Y=. Y	0.99	0.99	0.99	0.98	0.98	0.9	0.99	1	0.99	0.99	0.99	0.99	0.98	0.99	0.99	0.98	0.99	0.99	0.99	0.9	0.99	0.99	1	0.99	Р	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	9	2	2	7	97	5		8	8	3	9	1	9	4	7	9	8	9	97	8	9		9	valu	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																									e	
+4. +5.5 +6.0 +5.0 +3.1 1.7 +4.9 +5.2 +3.4 +4.8 +3.3 3.29 +4.9 +5.3 +5.2 +4. +2.3 +4.2 +2.2 +2.9 E-65 9E- 2E- 5E- 3E- +4 3E- 3E- 4E- 8E- 3E- E- 6E- 6E- E- 2E- E- 1E- 3E- 2E- 7E- 5E- E- E- 3*X	Y=-	Y=-	Y=-	Y=-	Y=-	Y=	Y=-	Y=-	Y=-	Y=-	Y=-	Y=-	Y=-	Y=-	Y=-	Y=-	Y=-	Y=-	Reg							
E-65 9E- 2E- 5E- 3E- +4 3E- 4E- 8E- 3E- 4E- 6E- 6E- 6E- 2E- 1E- 3E- 2E- 7E- 5E- E- E- 1E- 3*X	1.56	1.74	0.99	1.55	1.56	-	1.04	1.66	1.55	2.01	1.74	1.4+	1.27	1.16	1.64	1.13	1.6+	1.17	2.11	1.4	1.35	0.86	1.01	1.48	ress	
3*X 3*X 3*X 3*X 3*X 5*X 3*X 3*X 3*X 3*X 3*X 3*X 3*X 3*X 3*X 3	+4.	+5.5	+6.0	+5.0	+3.1	1.7	+4.9	+5.2	+3.4	+4.8	+3.3	3.29	+4.9	+5.3	+2.8	+4.8	4.42	+5.3	+5.2	+4.	+2.3	+4.2	+2.2	+2.9	ion	
3* X X	E-65	9E-	2E-	5E-	3E-	+4	3E-	3E-	4E-	8E-	3E-	E-	6E-	6E-	E-	2E-	E-	1E-	3E-	2E-	7E-	5E-	E-	E-	equ	
	3*X	3*X	3*X	3*X	3*X	E-	3*X	3*X	3*X	3*X	3*X	3*X	3*X	3*	3*X	3*X	3*X	3*X	atio							
						3*														X					n	
						X																				

Table 4: LC_{50} and LC_{90} values of crude metabolites for fungus *Cl. herberum* with 21 days incubation period for the four larval stages of the two mosquito species.

	An.stephensi													Cx. pipiens													
	4 I			3			2 I			11			4 I			3			2 I			11					
72	48	24	72	48	24	72	48	24	72	48	24	72	48	24	72	48	24	72	48	24	72	48	24				
138.	161.	184.	125.	145.	187.	100.	145.	163.	72	113.	143.	145.	204.	211.	133.	152.	199.	113.	145.	190.	79.7	135.	152.	IC			
4	3	9	2	2	2	9	1	1		1	7	6	4	6	3	6	6	6	9	5		2	2	50			
																								valu			
																								e			
114.	128.	146.	102.	118.	147.	80.8	120.	131.	46.2	58.8	116.	121.	157.	156.	110.	124.	154.	93.3	118.	146	56.5	109.	124.	Lim			
4-	9-	7-	9-	6-	1-	-	3-	9-	-	11	7-	1-	2-	1-	2-	4-	4-	-	2-	-	-	4-	3-	its			
192.	264.	310.	171.	215.	329.	128.	203.	254	90.9	175.	216.	203.	394.	541.	184.	229.	375.	148.	222.	383.	99.3	201.	227.	95			
5	4	1	8	1	3	2	6			3	2	2	2	6	8	1	2	3	8	7		9	5	%			
298.	347.	357.	292.	317.	368.	257.	302.	334.	219.	330.	322.	300	391.	436.	296.	323.	385.	272.	326.	395.	227.	319.	321.	IC			
1	1	8	1	9	6	2	1	9	2	2	1		2	3	4	2	4	2	7	3	9	3	5	90			
																								valu			
																								e			
227.	251.	260.	221.	236.	264.	200.	230.	247.	175.	233.	238.	230.	275	289.	225.	240.	272.	210.	240.	273.	181.	235-	239.	Lim			
6-	3-	3-	9-	9-	3-	7-	7-	5-	2-	2-	1-	1-	-	3-	7-	7-	3-	6-	4-	4-	4-	612.	9-	its			
503.	702.	708.	502.	581.	773	410.	508.	628.	329.	771.	607.	499.	892.	137	505.	590.	859.	443.	624.	977.	345.	2	584.	95			
6	7	8	8	3		4	7	5	7	1	1	5	9	7.3	4	5	2	5	1	2	4		4	%			
0.23	0.37	0.48	0.01	0.43	0.08	0.22	0.46	0.05	0.14	0.43	0.46	0.28	0.32	0.44	0.01	0.25	0.16	0.24	0.31	0.19	0.15	0.20	1.08	X2			
3	7	6	4	0	4	1	5	7	7	4	3	5	0	0	3	2	8	2	0	3	2	3	0				
0.99	0.98	0.97	1	0.98	0.99	0.99	0.99	1	0.99	0.98	0.97	0.99	0.98	0.97	1	0.99	0.99	0.99	0.98	0.99	0.99	0.99	0.89	Р			
4	4	5		0	9	4	7		7	0	7	1	9	9		3	7	3	9	6	7	5	7	valu			
																								e			
Y=-	Y=-	Y=-	Y=-	Y=-	Y=-	Y=-	Y=-	Y=-	Y=-	Y=-	Y=-	Y=-	Y=-	Y=-	Y=-	Y=-	Y=-	Y=-	Y=-	Y=-	Y=-	Y=-	Y=-	Reg			
1.12	1.12	1.36	0.96	1.09	1.32	0.83	1.19	1.22	0.63	0.67	1.05	1.22	1.4	1.22	1.05	1.15	1.37	0.91	1.03	1.2	0.69	0.94	1.17	ress			
+8.0	+6.9	+7.3	+7.6	+7.1	+7.0	+8.	+8.2	+7.4	+8.	+5.9	+7.	+8.3	+6.	+5.8	+7.8	+7.5	+6.8	+8.0	+7.0	+6.	+8.6	+6.9	+7.7	ion			
9E-	3E-	1E-	7E-	5E-	5E-	2E-	6E-	7E-	7E-	2E-	3E-	9E-	81E	7E-	5 E -	2E-	1E-	5E-	7E-	29E	4E-	5E-	5E-	equ			
3*X	3*X	3*X	3*X	3*X	3*X	3*X	3*X	3*X	3*X	3*X	3*X	3*X	-	3*X	3*X	3*X	3*X	3*X	3*X	-	3*X	3*X	3*X	atio			
													3*X							3*X				n			

Table 5: LC_{50} and LC_{90} values of crude metabolites for fungus *Cl. herberum* with 28 days incubation period for the four larval stages of the two mosquito species.

		An.stephensi											C x. pipiens													
	4 I			3			21			11		4I 13							2 I			11				
72	48	24	72	48	24	72	48	24	72	48	24	72	48	24	72	48	24	72	48	24	72	48	24	1		
152.	185	230.	136.	172.	208.	109.	158.	176	81.3	120.	159.	160.	209.	260.	149	180.	214.	123.	180.	181.	88.7	153.	173.	IC		
7	.3	6	9	1	6	1	3			1	9	4	7	6	.2	2	1	5	4	6		9	5	50		
																								valu		
																								e		
123.	141	167.	112.	134	158.	89.3	122.	141.	59.8	94.5	129-	129.	154.	179.	121	140.	162.	101.	133.	145.	69-	118.	138.	Lim		
2-	.1-	3-	2-	-	2-	-	5-	2-	-	-	251.	7-	3-	3-	.3-	6-	8-	5-	2-	9-	109	7-	1-	its		
238.	392	642.	196.	320.	435.	139.	308.	283	100.	180.	7	249.	552.	122	225	330.	436.	168	517.	290.		305.	289.	95		
1	.4	5	8	3	9	8	8		2	8		8	6	6.1	.5	6	5		1	4		8	1	%		
333.	402	453.	308.	376.	406.	263.	380.	345.	222.	321.	336.	334.	440.	509.	324	375.	402.	289.	437.	344.	230.	382	353.	IC		
2	.1	9	4	2	7	8	5	5	9	4	7	2	1	1	.4	5	6	1	2	6	5		6	90		
																								valu		
																								e		
244.	274	297.	231.	263.	280.	205.	261.	254.	179.	231.	247.	246.	290.	316.	240	265.	280.	220.	282.	254.	184.	260.	256.	Lim		
3-	.3-	9-	3-	4-	6-	8-	3-	1-	3-	9-	3-	5-	1-	1-	.3-	1-	1-	2-	7-	7-	9-	6-	4-	its		
644.	107	1527	552.	879.	1015	420.	990.	658.	328.	675.	647.	631.	144	290	604	844.	967.	493.	1707	645.	341.	1038	710.	95		
4	1.1	.2	1	9	.4	3	5	9	4	7	1	3	2.6	2.9	.5	4	3	2	.5	2	2	.1	6	%		
0.17	0.1	0.04	0.07	0.00	0.10	0.00	0.00	0.00	0.14	1.0.4	0.40	0.01	0.00			0.00	0.00		0.00	0.00	0.17	0.10	0.10			
0.17	0.1	0.04	0.07	0.02	0.13	0.22	0.08	0.02	0.14	1.34	0.42	0.21	0.23	0.14	0.2 67	0.02	0.03	0.11	0.08	0.20	0.17	0.18	0.10	X2		
1	43	9	7	5	8	6	7	2	4	6	2	2	6	5	6/	9	9	2	7	4	3	9	8			
0.99	0.9	1	0.99	1	0.99	0.99	0.99	1	0.99	0.85	0.98	0.99	0.99	0.99	0.9	1	1	0.99	0.99	0.99	0.99	0.99	0.99	Р		
7	98		9		8	4	9		8	4	1	5	4	7	92			8	9	5	6	6	9	valu		
																								e		
Y=-	Y=-	Y=-	Y=-	Y=-	Y=-	Y=-	Y=-	Y=-	Y=-	Y=-	Y=-	Y=-	Y=-	Y=-	Y=	Y=-	Y=-	Y=-	Y=-	Y=-	Y=-	Y=-	Y=-	Reg		
1.09	1.1	1.32	1.03	1.08	1.35	0.9+	0.91	1.33	0.74	0.77	1.17	1.19	1.17	1.35	-	1.18	1.46	0.96	0.9+	1.44	0.8+	0.87	1.24	ress		
+7.6	+5.	+5.6	+7.4	+6.2	+6.4	8.27	+5.7	+7.5	+9.0	+6.4	+7.3	+7.4	+5.6	+5.2	1.1	+6.5	+6.8	+7.7	4.98	+7.9	9.04	+5.6	+7.1	ion		
1E-	9E-	9E-	E-	E-	2E-	E-	8E-	61E-	4E-	4E-	8E-	6E-	E-	E-	+7.	8E-	3E-	8E-	6E-	7E-	E-	5E-	3E-	equ		
3*X	3*	3*X	3*X	3*X	3*X	3*X	3*X	3*X	3*X	3*X	3*X	3*X	3*X	3*X	3E-	3*X	3*X	3*X	3*X	3*X	3*X	3*X	3*X	atio		
	Х														3*									n		
															X											
																1			1							

An.stephensi table 1, 2, 3, 4, 5. The present results agreed with the findings of Grove and Pople, (1980) who used 20 g of the crude extract of Beauvercin toxin produced by *B. bassiana* against the larvae of *Ae. aegypti*, resulting in 86% mortality. Weiser and Matha, (1988) achieved a 100% mortality rate using a crude extract of Tolypin produced from *Tolypocladiumniveum* at a concentration of 100 mg / ml against the *Cx. pipiens*. Vivekanandhan *et al.*, (2018) mentioned fungus leaching of *Fusarium oxysporium* affected the larvae of my *An. stephensi* and *Cx. quinquefasciatus*, the value of LC₅₀ (109.24, 320.30) mg/ml for the two mosquitoes, respectively, after 24 hours of treatment.

Conclusion

The secondary metabolites of fungus *Cl. Herbarum* was a high effect on different larval stage mosquitoes Cx. *pipiens* and *An stephensi*, this metabolites can use as insecticide against other types of insects.

References

- Abbott, W. (1925). A method of computing the effectiveness of insecticide. J. Econ. Entomol., 18: 265-267.
- Abdel-Baky, N.F., A.H. Abdel- Salam and H.A.K. El-Serafi (2000). Colonization of *Bemisia species* complex on certain of *J. Agric Sci.*, **25**: 2921-2941.
- Akiyma, H. and D.Y. Chen (1999). Simle HPLC determination of

a flatoxin B1. B2. G1. G2. in nut and conrn, *J. of food Hygienic Socity of Japan*, **37(4):** 195-201.

- Finney, D.J. (1971). Probit analysis, 3rded. Cambridge University, press, Cambridge. 333 PP Masson and Cie, Paris Vol: V. 331.
- Grove, J.F. and M. Polpe (1980). The insecticidal activity *Beauveria* and enniation complex . *Mycopathology*, **70**: 103-105.
- Ishak, I.H., B. Kamagang, S.S. Ibrahim, J.M. Riveron, H. Irving and C.S. Wondji (2017). Pyrothroid resistance in Malaysian Populations of dengue vector *Aedesaegypti* is method by CYPq family of Cytochrome P450 genes. *PLOS. Negl Trop. Dis.*, **11(1):** e005302.
- Mehdi, N.S. and Z.H. Mohsen (1989). Effect of insect growth inhibitor isystin on *Culexquinquefasciatus* (Diptera: Culicidae). *Insect Appl.*, **10(3):** 29-33. Is quitovections. *Asian Pacific Journal of Tropical Biomedicine*, **8(5):** 273.
- Soni, S. and S. Prakash (2010). Effect of *Chrysosporium Keratinophilum* metabolites agniast *Culexquinquefasciatus* after chromatographic furifications. *Parasitol Res.*, 107: 1329-1336.
- Vivekanandhan, P., S. Karthi, M.S. Shizakumar and G. Benelli (2018). Synergistic effect of entomopathogenic fungus *fusarium oxysporium* extract in combination with temphos against three major mosquito vectors. *Pathogens and Global Health, Do*: 10-1080/2047724.
- W.H.O. (2018) . Malaria Programes Iraq . C : I users / DELL / Videos / 2018 .
- Weiser, J. and V. Matha (1988). Tolypina new insecticidal metabolite of fungi of the invertebrate. *Pathology*, **51**: 94-96.